3(x^2+5x)=-3x^2+2x+5

Simple and best practice solution for 3(x^2+5x)=-3x^2+2x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x^2+5x)=-3x^2+2x+5 equation:



3(x^2+5x)=-3x^2+2x+5
We move all terms to the left:
3(x^2+5x)-(-3x^2+2x+5)=0
We multiply parentheses
-(-3x^2+2x+5)+3x^2+15x=0
We get rid of parentheses
3x^2+3x^2-2x+15x-5=0
We add all the numbers together, and all the variables
6x^2+13x-5=0
a = 6; b = 13; c = -5;
Δ = b2-4ac
Δ = 132-4·6·(-5)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-17}{2*6}=\frac{-30}{12} =-2+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+17}{2*6}=\frac{4}{12} =1/3 $

See similar equations:

| 2(x+1)-3x=3(x-6) | | -2x4=-3x-2 | | -9(x-7)=63 | | 85=5x+10 | | c4−5=2 | | 3x+6=4x+73x+6=4x+7 | | 3/7=4x/6 | | 30=16+5x | | -2x+13=0.5x+4 | | h/6=12/4h= | | z/4+2=6-2/4 | | 4x+3x=7-64x+3x=7−6 | | 32+5u=9u | | 3(x^2+5)=-3x^2+2x+5 | | -(-3x-5)=0 | | -7x-26=2x×10 | | 5=-1/3z | | 13=7a=-3a-7 | | 2+5x/9=-7 | | /x+7=-8 | | (6x-10)(6x-10)=36x^2+100 | | -9X^2-13x+5=0 | | 5-n=10-n-5 | | 29+y=45 | | a+(-9)=5 | | -10x+91=-9 | | a-2=-(3a+5) | | 6y+42=12y | | 6f+18=54 | | 10x^{-2}+3x^{-1}-1=0 | | 3x-12=-2x-5 | | 0=2x^2-75x-3000 |

Equations solver categories